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Abstract
Within the framework of supersymmetric quantum mechanics, we obtain a class
of solvable potentials of shape invariance in two steps, where the parameters a1

and a2 of partner potentials are related to each other by translation a2 = a1 + α.
It is found that discontinuity at some x-points is a characteristic of the two-step
superpotentials, therefore giving rise to Dirac delta-function singularities to the
corresponding potentials.

PACS number: 03.65.−w

1. Introduction

The number of solvable potentials for the Schrödinger equation in nonrelativistic quantum
mechanics is rather limited. In this regard, the ideal of shape invariance condition [1] in
supersymmetric quantum mechanics [2, 3] becomes very useful, because it leads immediately
to an integrability condition. Supersymmetric quantum mechanics (SUSYQM) was initially
proposed to study dynamical supersymmetry (SUSY) breaking in quantum field theory [2]. It
was soon realized that SUSYQM by itself was very interesting. For instance, the formalism
of SUSYQM enables us to construct a family of isospectral Hamiltonians starting from a
given one-dimensional Hamiltonian [4]. For a review of SUSYQM, please refer to [5–7] and
references therein. Later on, the concept of shape invariance within the structure of SUSYQM
was introduced by Gendenshtein [1]. It is readily shown that for any shape invariant potential
in SUSYQM, the energy eigenvalues and eigenfunctions can be obtained algebraically if
SUSY remains unbroken. Shape invariance condition is also studied in the framework of the
so-called fractional SUSYQM of order k (k = 3, 4, . . .) [8]. In order to pass from ordinary
SUSYQM to fractional SUSYQM of order k, one has to replace Z2-grading of the relevant
Hilbert space by a Zk-grading [9, 10].

In the first two sections (sections 1 and 2) of the present paper, we shall review and
reproduce some results of [11]. The key ingredient in solving the exact eigenvalue problems
in SUSYQM is the connection between the ground-state wavefunction and the potential (up to
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a constant). So, let us consider a Hamiltonian, in units of h̄ = 2m = 1, having the following
factorizable form:

H− = − d2

dx2
+ V−(x) ≡ A†A, (1)

where the operators A and A† are defined by

A = d

dx
+ W(x), A† = − d

dx
+ W(x). (2)

Hence the potential V−(x) is given as

V−(x) = W 2(x) − W ′(x), (3)

where W ′(x) ≡ d
dx

W(x). The quantity W(x) is generally referred to as the superpotential
in SUSYQM literature. In the case of unbroken SUSY, we note that the unnormalized
wavefunction, constructed out of the superpotential W(x),

ψ
(−)
0 (x) ∝ exp

[
−

∫ x

W(y) dy

]
(4)

is the nodeless zero-energy ground-state eigenfunction for the Hamiltonian H−, since the
equation Aψ

(−)
0 (x) = 0 is fulfilled.

To establish a SUSY theory out of the original Hamiltonian H−, we define another
Hamiltonian by simply reversing the order of A and A†. It is

H+ ≡ AA† = − d2

dx2
+ V+(x). (5)

A little algebra shows that

V+(x) = W 2(x) + W ′(x). (6)

At this time, the zero-energy ground state for H+ is the unnormalized wavefunction
ψ

(+)
0 (x) ∝ exp

[
+

∫ x
W(y) dy

]
, because of A†ψ

(+)
0 (x) = 0.

The pair of potentials V−(x) and V+(x) is named as SUSY partner potentials. The
Hamiltonians H− and H+ are thus called SUSY partner Hamiltonians. One special feature
about the SUSY theory is that except for an additional zero-energy eigenstate of H−, the pair
of partner Hamiltonians is found to have exactly the same energy eigenvalues. Explicitly, the
eigenstates of H− and H+ are related to each other by (n = 1, 2, 3, . . .)

ψ
(+)
n−1(x) = [

E(−)
n

]−1/2
Aψ(−)

n (x), ψ
(−)
n+1(x) = [

E(−)
n

]−1/2
A†ψ(+)

n (x). (7)

Here, the eigenvalues are E
(−)
0 = 0 and E

(+)
n−1 = E(−)

n . As a result, if we know all the
eigenfunctions of H− we can determine all the eigenfunctions of H+, and vice versa, except
for the zero-energy ground-state eigenfunction ψ

(−)
0 (x) of H−.

An integrability condition called shape invariance can be imposed to further relate the
pair of SUSY partner potentials (3) and (6). Using this condition, one can easily determine the
entire spectrum of H− algebraically [1, 12]. Though the general problem of shape invariance
condition is yet to be solved, the partial lists of classification of such solvable potentials
have been constructed. We shall discuss the shape invariance condition in a bit detail in
section 2.

In the present paper, we study shape invariance condition in two steps and obtain a class of
solvable potentials, in which the parameters a1 and a2 of partner potentials are related to each
other by translation a2 = a1 + α. It is found that some SUSY preserving singular potentials,
such as singular harmonic oscillator, singular Pöschl–Teller I and singular Pöschl–Teller II
potentials discussed in [13], belong to this class as a special case. One important aspect
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regarding the translation class of shape invariance condition in two steps is that discontinuity
at some x-points is characteristic of the shape invariant superpotentials, and thus leads to
Dirac delta-function singularities to the corresponding potentials. The organization of the
paper is as follows. In section 2, we review the formalism of shape invariance condition, to
which the partner potentials are related. In section 3, using an ansatz, we obtain a class of
SUSY preserving potentials by solving the shape invariance condition in two steps. Section 4
presents the conclusions.

2. Formalism of shape invariance condition

The concept of shape invariance within the formulation of SUSYQM was first introduced
by Gendenshtein [1]. Generally speaking, the pair of partner potentials V±(x) defined in
equations (3) and (6) are said to be shape invariant, if both of them are similar in shape but
differ only up to a change of parameters and additive constants. For instance, V−(x) and V+(x)

are said to be shape invariant, if they satisfy the relation

V+(x, a1) = V−(x, a2) + R(a1), (8)

where a1 is a set of parameters, a2 = f (a1) is a function of a1 and the remainder R(a1) is
independent of x. We call equation (8) the one-step shape invariance condition, since the
partner potentials V−(x, a2) and V+(x, a1) are related to each other by only one relation.

By using the shape invariance condition (8), the entire spectrum of the Hamiltonian H−
can be obtained algebraically. It is found that the complete energy eigenvalues of H− are, for
n = 1, 2, 3, . . . ,

E
(−)
0 = 0, E(−)

n =
n∑

k=1

R(ak), (9)

and the corresponding nth unnormalized energy eigenfunction is given by

ψ(−)
n (x, a1) ∝ A†(a1)A

†(a2) · · · A†(an)ψ
(−)
0 (x, an+1). (10)

Here, we have suppressed the x-dependence in the operators A†(x, ai) to simplify the notation.
We recall that the zero-energy ground-state eigenfunction ψ

(−)
0 (x, a1) is expressible in terms

of the superpotential in equation (4).
The classification of various solutions to the shape invariance condition in one-step (8)

has been established. Four classes of solvable shape invariant potentials that retain SUSY are
found and discussed. The first class [14], where the parameters a1 and a2 are related to each
other by translation (a2 = a1 +α), contains all the analytically solvable potentials known in the
context of nonrelativistic quantum mechanics. In the second class [11, 15], the parameters a1

and a2 are related by the scaling (a2 = qa1, 0 < q < 1). In the third class [11], the parameters
a1 and a2 are related by the possibilities: a2 = qa

p

1 , for 0 < q < 1 and p = 2, 3, . . . and
a2 = qa1/(1 + pa1). It is found that classes two and three contain those potentials that are
not obtainable in terms of elementary functions but only in a series form. In regard to the last
class [16], the parameter repeats itself after a cycle of p iterations, one thus has the relations:
a1 = ap+1 and f (a1) = a2 = ap+2.1

We can in principle go one step further to obtain more solvable shape invariant potentials
by simply extending the concept of shape invariance condition to two and even multi-steps.
The procedure of generalization is rather straightforward. Take the shape invariance condition
in two steps as an example. In the situation of unbroken SUSY, we consider two superpotentials

1 Strictly speaking, these four classes can be transformed to one another by suitable reparameterizations. For
example, the scaling form a2 = qa1 can be rearranged into the translation form a′

2 = a′
1 + α by taking logarithms.

3
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W(x, a1) and W̃ (x, a1) such that the derived potentials V+(x, a1) and Ṽ−(x, a1) are the same
up to an additive constant

V+(x, a1) = Ṽ−(x, a1) + R(a1), (11)

or, equivalently, in terms of the superpotentials W(x, a1) and W̃ (x, a1)

W 2(x, a1) + W ′(x, a1) = W̃ 2(x, a1) − W̃ ′(x, a1) + R(a1). (12)

The shape invariance condition then imposes this relation

Ṽ+(x, a1) = V−(x, a2) + R̃(a1), (13)

that is, alternatively

W̃ 2(x, a1) + W̃ ′(x, a1) = W 2(x, a2) − W ′(x, a2) + R̃(a1). (14)

Equations (11) and (13) (or (12) and (14)) together are called the shape invariance condition
in two steps, because the partner potentials V−(x, a2) and V+(x, a1) now are related to each
other by two relations, not just by one.

Similar to shape invariance in one step, the energy eigenvalues and eigenfunctions of
the potential V−(x, a1) for the shape invariance condition in two steps can also be obtained
algebraically, when equations (11) and (13) simultaneously hold. It can be shown that on
solving the two equations the eigenvalues are (n = 0, 1, 2, . . .)

E
(−)
2n =

n∑
k=1

[R(ak) + R̃(ak)], (15)

E
(−)
2n+1 =

n∑
k=1

[R(ak) + R̃(ak)] + R(an+1), (16)

and the corresponding unnormalized eigenfunctions are

ψ
(−)
2n (x, a1) ∝ [A†(a1)Ã

†
(a1)] · · · [A†(an)Ã

†
(an)]ψ

(−)
0 (x, an+1), (17)

ψ
(−)
2n+1(x, a1) ∝ [A†(a1)Ã

†
(a1)] · · · [A†(an)Ã

†
(an)]A

†(an+1)ψ̃
(−)
0 (x, an+1), (18)

where to avoid notational complexity, the x-dependence of the operators A†(x, ai) and
Ã

†
(x, ai) is suppressed. ψ

(−)
0 (x, a1) and ψ̃

(−)
0 (x, a1), expressible in terms of the corresponding

superpotentials by using equation (4), denote the zero-energy ground-state eigenfunctions for
the potentials V−(x, a1) and Ṽ−(x, a1), respectively. Here, we note the different structures of
energy eigenvalues, equations (15) and (16), between the even number eigenstates ψ

(−)
2n (x, a1)

and the odd number ones ψ
(−)
2n+1(x, a1).

As far as the classification of various solutions of shape invariance condition in two steps is
concerned, two classes of solutions have been obtained up-to-date [11]. They are the solutions
where the parameters a1 and a2 are related to each other by scaling a2 = qa1 and where those
by the relation a2 = qa

p

1 , for p a positive integer. To author’s knowledge, no solution other
than these two classes has ever been constructed. For example, no solution has been reported
in the translation class for the shape invariance condition in two and even multi-steps. Hence,
in section 3 we shall investigate this particular problem and construct explicitly the solvable
potentials of shape invariance in two steps, where the parameters a1 and a2 are related by
translation (a2 = a1 + α).
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3. Solutions of shape invariance in two steps

This section is aimed to find the solvable solutions to the shape invariance condition in two
steps, for the class that the parameters a1 and a2 are related by translation. Mathematically,
the condition is described by equations (11) and (13) (or (12) and (14)). It turns out that some
shape invariant potentials in two steps can be constructed, in which the singular potentials
discovered recently are found to be included as a special case.

To find the two-step shape invariant potentials for the translation class (a2 = a1 +α, where
a1 is an arbitrary parameter and α is a constant), let us make an ansatz. We assume that the
superpotentials W(x, a1) and W̃ (x, a1) admit the following expansions in the a1 parameter2:

W(x, a1) = g0(x) + g1(x)a1, W̃ (x, a1) = g̃0(x) + g̃1(x)a1, (19)

where the functions gi(x) and g̃i (x) for i = 0, 1 are to be determined. Similarly, the remainders
R(a1) and R̃(a1) are assumed to have the expansions

R(a1) = R0 + R1a1 + R2a
2
1, R̃(a1) = R̃0 + R̃1a1 + R̃2a

2
1, (20)

where the coefficients Ri and R̃i for i = 0, 1, 2 are constants, independent of the parameter
a1. Note that in this ansatz the superpotentials and the remainders are treated differently in
the expansions in powers of a1.

By applying the above ansatz for the superpotentials W(x, a1) and W̃ (x, a1) and for the
remainders R(a1) and R̃(a1) to the shape invariance condition in two steps, we should find
some equations satisfied by the unknown functions gi(x) and g̃i(x). To be more precise, when
substituting equations (19) and (20) into equations (12) and (14) and equating the coefficients
of the powers of a1, we obtain five equations as follows. At the (a1)

2 order, we find one
equation

g2
1 − g̃2

1 = R2 = −R̃2. (21)

At the (a1)
1 order, we have two equations

(g′
1 + g̃′

1) + 2(g0g1 − g̃0g̃1) = R1, (22)

(g′
1 + g̃′

1) − 2(g0g1 − g̃0g̃1) − 2αg2
1 = R̃1. (23)

At the (a1)
0 order, we get

(g′
0 + g̃′

0) +
(
g2

0 − g̃2
0

) = R0, (24)

(g′
0 + g̃′

0) − (
g2

0 − g̃2
0

)
+ α

(
g′

1 − 2g0g1 − αg2
1

) = R̃0. (25)

The solutions of the shape invariant potentials in two steps can be readily obtained by
simultaneously solving the set of above equations, equations (21)–(25). Let us solve these
equations one by one. First, from equation (21) we obtain

g̃1(x) = ±
√

g2
1(x) − R2. (26)

The g̃1(x) function is expressed in terms of g1(x) and can have either the same or the opposite
sign to the g1(x) function.

2 The ansatz is motivated by its counterpart in the translation class of the one-step shape invariance condition. For
instance, if we take in equation (8) that W(x, a1) = g0(x) + g1(x)a1 and R(a1) = R0 + R1a1, then many known
solvable solutions can be easily deduced by different choices of α, R0 and R1. It is noted that another ansatzes might
lead to more solvable shape invariant potentials in two steps, but at present the existence of such ansatzes is not known
to the author.

5



J. Phys. A: Math. Theor. 41 (2008) 255307 W-C Su

Secondly, the addition of equations (22) and (23) yields a first-order differential equation
satisfied by g1(x) as[

1 ± g1(x)√
g2

1(x) − R2

]
g′

1(x) = 1

2
(R1 + R̃1) + αg2

1(x), (27)

or, equivalently, that by g̃1(x) as[
1 ± g̃1(x)√

g̃2
1(x) − R̃2

]
g̃′

1(x) = 1

2
(R1 + R̃1 + 2αR2) + αg̃2

1(x), (28)

where we have used equation (26), in which the ± sign on the left-hand side of the above
both equations is defined. The SUSY preserving solutions of g1(x) and g̃1(x) can be easily
obtained by solving the two equations. We shall come back to this point later.

Thirdly, the remaining three equations are reshuffled into

4(g0g1 − g̃0g̃1) + 2αg2
1 = R1 − R̃1, (29)

2
(
g2

0 − g̃2
0

) − α
(
g′

1 − 2g0g1 − αg2
1

) = R0 − R̃0, (30)

2(g0 + g̃0)
′ + α

(
g′

1 − 2g0g1 − αg2
1

) = R0 + R̃0. (31)

Therefore, via the first two equations (29) and (30), we can in principle express the unknown
functions g0(x) and g̃0(x) in terms of g1(x), g̃1(x), and the coefficients Ri and R̃i (i = 0, 1).
These results can then be substituted into the third equation (31), which serves as a consistency
condition, to obtain the explicit expressions for g0(x) and g̃0(x). The detailed computation is
rather straightforward, but a bit tedious. After the calculation, which is omitted here, we get
g0(x) and g̃0(x) of the following forms:

g0(x) = 1

4R2
[(R1 − R̃1 − 2αR2)g1(x) ± F(x)g̃1(x)], (32)

g̃0(x) = 1

4R2
[(R1 − R̃1)g̃1(x) ± F(x)g1(x)], (33)

where the function F(x) is defined by

F(x) ≡ (R1 + R̃1) + 2αR2
g1(x)

g1(x) + g̃1(x)
, (34)

and the + sign in equations (32) and (33) is taken if the function F(x) > 0. Similarly, the −
sign is chosen if F(x) < 0.

In addition, the consistency condition (31) simultaneously imposes extra constraints
among the R coefficients. There are two possible relations. The first relation is for the case
R2 = −R̃2 > 0, where R0 and R̃0 introduced in equation (20) are given by

R
(1)
0 = 1

4R2
R2

1, R̃
(1)
0 = 1

4R2

[
(R1 + R̃1)(R1 + R̃1 + 2αR2) − R̃2

1

]
. (35)

The superscript notation (1) stands for the first case. The same notation applies to the other
case, too. The second relation is for the case R2 = −R̃2 < 0. We get

R
(2)
0 = − 1

4R2

[
(R1 + R̃1)(R1 + R̃1 + 2αR2) − R2

1

]
, R̃

(2)
0 = − 1

4R2
R̃2

1 . (36)

In fact, the two relations are not really independent. Because when R2 is changed to
−R2 = R̃2, we observe that the roles of g1(x) and g̃1(x) in equation (21) get exchanged

6
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accordingly. This could further lead to the exchange of the both superpotentials given in
equation (19) in a similar fashion. We therefore expect that there exists a symmetrical
transformation between the two cases. As a result, we can map all the eigenvalue problems,
including the eigenenergies, eigenfunctions, superpotentials and potentials, in the first case
(R2 > 0) to those in the second case (R̃2 = −R2 < 0). Explicitly, the transformation rule is
described by the following changes:

g1(x) ↔ g̃1(x), g0(x) → g̃0(x), g̃0(x) → g0(x) + αg1(x),

R2 ↔ R̃2, R1 → R̃1, R̃1 → R1 + 2αR2, (37)

R
(1)
0 → R̃

(2)
0 , R̃

(1)
0 → R

(2)
0 + αR1 + α2R2.

Under such a transformation, it can be easily checked that the set of equations,
equations (21)–(25), remains intact.

The transformation rule (37) actually has an important implication on the Hilbert space
of the system. To see this, let us consider a generic shape invariant potential in two steps.
If R2 > 0 is considered, we then find, for example, that the eigenfunctions of the potential
V−(x, a1) are ordered in such a way as those depicted in equations (17) and (18) and the energy
eigenvalues are ordered as those represented in equations (15) and (16). As we shall show in
subsection 3.3, this indeed is the case for the shape invariant potentials in two steps. To be more
specific, the ground-state wavefunction of the system is ψ

(−)
0 (x, a1) ∝ exp[− ∫ x

W(y, a1) dy],
the first excited state is ψ

(−)
1 (x, a1) ∝ A†(a1) exp[− ∫ x

W̃ (y, a1) dy], and so on. The
superpotentials W(x, a1) and W̃ (x, a1) are given in equation (19). Moreover, the first three
remainders are given by R(1)(a1) = R

(1)
0 + R1a1 + R2a

2
1, R̃

(1)(a1) = R̃
(1)
0 + R̃1a1 + R̃2a

2
1 and

R(1)(a2) = R
(1)
0 + R1a2 + R2a

2
2 , where a2 = a1 + α and equation (35) are used.

Having found all the results for the R2 > 0 case, we can readily obtain, without doing
any calculation, those for the R2 < 0 case by simply applying the transformation rule (37)
on the former case. Upon performing the transformation, we find that the superpotentials
transform as W(x, a1) → W̃ (x, a1) and W̃ (x, a1) → W(x, a2) and that the remainders
transform as R(1)(a1) → R̃(2)(a1), R̃

(1)(a1) → R(2)(a2), R
(1)(a2) → R̃(2)(a2), and so on.

That is to say, according to the transformation rule the ground-state wavefunction at this
time is transformed to ψ̃

(−)
0 (x, a1) ∝ exp[− ∫ x

W̃ (y, a1) dy] and the first excited state is to

ψ
(−)
1 (x, a1) ∝ Ã

†
(a1) exp[− ∫ x

W(y, a2) dy]. As a result, for the case R2 < 0, the entire
spectrum of eigenenergies of the transformed potential Ṽ−(x, a1) is given by

E
(−)
2n =

n∑
k=1

[R̃(2)(ak) + R(2)(ak+1)], (38)

E
(−)
2n+1 =

n∑
k=1

[R̃(2)(ak) + R(2)(ak+1)] + R̃(2)(an+1), (39)

where E
(−)
0 = 0, and the corresponding unnormalized eigenfunctions of the system are

ψ
(−)
2n (x, a1) ∝ [Ã

†
(a1)A

†(a2)] · · · [Ã
†
(an)A

†(an+1)]ψ̃
(−)
0 (x, an+1), (40)

ψ
(−)
2n+1(x, a1) ∝ [Ã

†
(a1)A

†(a2)] · · · [Ã
†
(an)A

†(an+1)]Ã
†
(an+1)ψ

(−)
0 (x, an+2). (41)

The Hilbert space of the R2 < 0 case can thus be completely determined by that of the R2 > 0
case.

Let us now analyze the general properties of energy spectrum of the shape invariant
potentials in two steps with an+1 = an + α = a1 + nα. Using the explicit forms of

7
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equation (20), we write the dependence of the remainders R(i)(an+1) and R̃(i)(an+1) on the
quantum number n as

R(i)(an+1) ≡ R
(i)
0 + R1an+1 + R2a

2
n+1

= R(i)(a1) + α(R1 + 2a1R2)n + α2R2n
2, (42)

R̃(i)(an+1) ≡ R̃
(i)
0 + R̃1an+1 − R2a

2
n+1

= R̃(i)(a1) + α(R̃1 − 2a1R2)n − α2R2n
2, (43)

where i can be 1 or 2. We note that both remainders in equations (42) and (43) are quadratic
functions of the quantum number n and the coefficients of the n2-term are of the opposite
sign. Hence, either R(i)(an+1) or R̃(i)(an+1) shall become negative for large enough quantum
number n. However, negative values of the remainder are definitely not acceptable in the
energy spectrum at all, because it results in the level crossing in energy. We thus conclude
that, for a general shape invariant potentials in two steps with R2 �= 0 in the translation class,
the number of bound states must be finite and the corresponding potential must be of finite
depth. There is one exception, however. It is for the potentials where α = 0, since at this
time the terms containing n vanish in the both remainders. As we will see below, the solvable
potentials for α = 0 are the so-called singular harmonic oscillators, and thus contain infinite
number of bound states.

Besides, the both remainders (42) and (43) depend differently on the quantum number n
in a specific way. For the case R2 > 0, we note by using equation (35) that the remainder
R(1)(an+1) is a concave-up parabolic function of n with a double root (R(1)(an+1) = 0)

appearing at

n
(1)
0 = −R1 + 2a1R2

2αR2
, (44)

and the remainder R̃(1)(añ+1) is a concave-down parabolic function of n whose two roots
(R̃(1)(añ+1) = 0) are located, separately, at

ñ
(1)
± = 1

2αR2

[
(R̃1 − 2a1R2) ± |α|

α

√
(R1 + R̃1)(R1 + R̃1 + 2αR2)

]
. (45)

It is obvious that, for both roots ñ
(1)
± to be real, we must require that the product

(R1 + R̃1)(R1 + R̃1 + 2αR2) � 0.
In the same vein, for the other case R2 < 0, we obtain by equation (36) that the remainder

R̃(2)(añ+1) instead is a concave-up parabolic function of n with a double root (R̃(2)(añ+1) = 0)

at

ñ
(2)
0 = R̃1 − 2a1R2

2αR2
, (46)

and the remainder R(2)(an+1) a concave-down parabolic function of n with two distinct roots
(R(2)(an+1) = 0) at

n
(2)
± = − 1

2αR2

[
(R1 + 2a2R2) ± |α|

α

√
(R1 + R̃1)(R1 + R̃1 + 2αR2)

]
, (47)

where (R1 + R̃1)(R1 + R̃1 + 2αR2) � 0 must be satisfied as before. It is noted that
equations (46) and (47) can be directly gotten from equation (44) and (45) by applying
the transformation rule (37), respectively.

8
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We are now in a position to present the solutions of the two-step shape invariant
superpotentials by solving the differential equations (27) or (28). Without loss of generality,
we choose R2 = −R̃2 > 0, since the result for the R2 < 0 case can be easily deduced by the
transformation rule (37). In addition, we also choose R1 + R̃1 > 0 and R1 + R̃1 + 2αR2 > 0
in the solutions to be presented below. Comments concerning the choice R1 + R̃1 < 0 will be
given whenever needed. It turns out when R2 �= 0 that two SUSY preserving solutions can
be constructed. The first solution is for the case α = 0, which is shown to be the singular
harmonic oscillator potentials. The other solution is for the case α < 0, which results in a new
class of solvable potentials of shape invariance in two steps, that is not discussed previously.
Before presenting the calculations, let us emphasize one important point in regard to the
unbroken SUSY: only those superpotentials W(x, a1) and W̃ (x, a1) are admissible that give
rise to square integrable zero-energy ground-state wavefunctions ψ

(−)
0 (x, a1) and ψ̃

(−)
0 (x, a1).

If it cannot be fulfilled, then SUSY is spontaneously broken.

3.1. The solution of α = 0

The first SUSY retaining solution is for the case α = 0, therefore we have an+1 = a1, for
n � 1. The parameter is not shifted at all. Using equation (20), we obtain the remainders
with the properties R(an+1) = R(a1) and R̃(an+1) = R̃(a1). From equations (15) and (16),
the energy eigenvalues are given by E

(−)
2k = k(R(a1) + R̃(a1)) and E

(−)
2k+1 = E

(−)
2k + R(a1)

for k = 0, 1, 2, . . . . Hence, the energy spectrum of the system consists of two shifted sets of
equally spaced eigenvalues. This is nothing but the energy spectrum of the singular harmonic
oscillator [13].

Explicitly, equations (21)–(25) are relatively easy to solve when α = 0, so we will solve
them directly. After performing the integrals and setting the integration constants zero, we get
the g-functions:

g0(x)

g̃0(x)

}
= 1

4
(R0 + R̃0)x ± 1

2

R0 − R̃0

(R0 + R̃0)x
, (48)

g1(x)

g̃1(x)

}
= 1

4
(R1 + R̃1)x ± R2

(R1 + R̃1)x
, (49)

and a relation among the R-coefficients

R1 − R̃1

R1 + R̃1
− R0 − R̃0

R0 + R̃0
= 2R2(R0 + R̃0)

(R1 + R̃1)2
. (50)

When substituting these results into equation (19), we again find that the resultant
superpotentials W(x, a1) = g0(x) + g1(x)a1 and W̃ (x, a1) = g̃0(x) + g̃1(x)a1 are those
of the singular harmonic oscillator.

In addition, both superpotentials constructed above are found continuous with well-
defined derivatives everywhere in either x > 0 or x < 0 regions. However, at the origin x = 0,
they are singular and have an infinite discontinuity. The singular term of W(x, a1)(W̃ (x, a1))

around x = 0 point behaves like +(−) 1
2x

(
R0−R̃0

R0+R̃0
+ 2a1R2

R1+R̃1

)
, respectively. To maintain unbroken

SUSY and shape invariance, we have to restrict the strength of the both singular terms to be in
the domain −1 < R0−R̃0

R0+R̃0
+ 2a1R2

R1+R̃1
< 1 [13, 17]. As a result, the singularities become the so-called

‘soft’ and the corresponding potentials are said to be ‘transitional’, since the wavefunctions
of same energy defined in both x > 0 and x < 0 halves can have a chance to properly
communicate to each other. Besides the singularity, for any one of the superpotentials, the
infinite discontinuity that will generate an ill-defined derivative at the x = 0 point is definitely

9
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not acceptable. A regularization that preserves SUSY and shape invariance is needed, and in
fact has been proposed [13]. It is shown that, to regularize the infinite discontinuity of the
superpotential W(x, a1) (a similar regularization also applies to the superpotential W̃ (x, a1)),
we consider instead a regularized, continuous superpotential W reg(x, a1, ε) that reduces to the
original W(x, a1) in the limit ε → 0 as

W reg(x, a1, ε) = W(x, a1)f (x, ε), (51)

where f (x, ε) = tanh2 x
ε

is a moderating factor that is unity everywhere except in a small region
around x = 0. It is introduced to provide a smooth interpolation through the discontinuity. In
the limit ε → 0, the corresponding potential V

reg
− (x, a1, ε) (3) derived from the superpotential

W reg(x, a1, ε) will reduce to this form [13]

V
reg
− (x, a1) = V−(x, a1) − 4W(x, a1)

x

|x|δ(x). (52)

The upshot is that the regularized potential V
reg
− (x, a1) now exhibits an extra singularity with

Dirac delta-function behavior at the origin over the unregularized one V−(x, a1).

3.2. The solution of α > 0

Potentially, the second solution to equation (27) (or equation (28)) is for the α > 0 case.
However, it cannot be a true solution of the shape invariance condition in two steps, since it
contains infinite number of bound states and therefore violates our earlier assertion. To see
this, we note on solving equation (27) that the g1(x) function is given by the transcendental
function below (for x > 0)

|α|
k

x = tan−1[kg1(x)] +
1√

1 + k2R2

tan−1

[
k

√
g1(x)2 − R2

1 + k2R2

]
, (53)

where k =
√

2|α|
R1+R̃1

. A similar expression can be obtained for the function g̃1(x) by

equation (28). Here, g1(x) > 0 and g̃1(x) > 0 is assumed. It is stressed that the other
choice g1(x) > 0 > g̃1(x) renders the both functions being asymmetrical about x = 0, and is
discarded.

As a matter of fact, the g1(x) function given above is only defined in the range
(x1 < x < x2), with x1 = k

|α| tan−1
[
kR2

]
and x2 = π

2
k

|α| [1 + (1 + k2R2)
−1/2]. To extend the

definition of the g1(x) function to the small positive x space, that is, in the (0 < x < x1)

range, technically we need another transcendental function, where the arctan functions in
equation (53) have to be replaced by the minus of arccot ones. Moreover, to further extend the
function g1(x) to cover the negative x region (x < 0), then we can consult the antisymmetric
property of superpotentials, if the g1(x) function for x > 0 has been known.

Nevertheless, we are not really interested in other portions of the complete g1(x) function
that are not presented here, since the part of g1(x) given in equation (53) alone can be
shown not to be a solution of the shape invariance condition in two steps. The reason is as
follows. The function g1(x) in equation (53) is a monotonically increasing function in the
range (x1 < x < x2), with the respective end values g1(x1) = √

R2 and g1(x2) = ∞. The
g1(x) function is of infinite depth! So must be the corresponding superpotentials as well as
the potentials constructed from it. That is to say, the potentials in problem allow an infinite
number of bound states. This is contradictory to our earlier claim on the general structure
of energy spectrum of the two-step shape invariant potentials (α �= 0), where only a finite
number of bound states is allowed. We thus conclude that no solution can exist for the shape
invariant potentials in two steps, if α > 0.

10
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Figure 1. The functions g1(x) and g̃1(x) of shape invariance condition in two steps for the set of
parameters a1 = 1, α = −1, R2 = 1, R1 = 3 and R̃1 = 2. Here, g1(x) is given by equation (59),
corresponding to equation (54) for x > xc and to equation (55) for 0 < x < xc , where xc ≈ 0.471.
For x < 0, both functions are obtained by antisymmetrization.

3.3. The solution of α < 0

The third solution of equation (27) (or equation (28)) to be discussed is for the α < 0 case.
This case will render the new class of solvable potentials of shape invariance condition in two
steps, which retain SUSY. We shall present below the solution of g1(x) function only in the
x > 0 half-axis. The solution in the other half-axis (x < 0) can be easily deduced from the first
half by the antisymmetric property of superpotentials. It is found that the SUSY preserving
g1(x) function (for x > 0), which is singular as x → 0 and acquires a finite value as x → ∞,
can be constructed by patching two disjointed portions of solutions. At the position where
x = xc > 0 in between these two portions, there is a finite discontinuity. Consequently, as
regard to the profile of the complete g1(x) function that covers the entire x axis, an infinite
discontinuity is found occurring at x = 0, in addition to two finite discontinuities that are
located separately at x = ±xc.

By means of equation (27), the first portion of the solution, denoted by g>
1 (x), is defined

in the range (xc < x < ∞) and is given by the transcendental function below

|α|
k

x = tanh−1
[
kg>

1 (x)
]

+
1√

1 − k2R2

tanh−1

[
k

√
g>

1 (x)2 − R2

1 − k2R2

]
, (54)

where k is defined after equation (53). A similar expression can be deduced for the function
g̃>

1 (x) by solving equation (28). The choice of g>
1 (x) > 0 and g̃>

1 (x) > 0 is required for
equation (54) to be an acceptable solution in the first portion. Here, xc is the point such that
g>

1 (xc) = √
R2 or xc = k

|α| tanh−1[kR2]. In figure 1, we plot both functions g1(x) and g̃1(x)

in the entire x space. As we can see, g1(x) is a monotonically increasing function in the range

11
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(xc < x < ∞) (so is the g̃1(x) function), with the respective end values g>
1 (xc) = √

R2 and
g>

1 (∞) = k−1. Since k−1 is finite and R1 + R̃1 + 2αR2 > 0 is also true, we conclude that the
superpotentials W(x, a1) and W̃ (x, a1) (19) constructed respectively from g1(x) and g̃1(x)

are guaranteed to be of finite depth. Consequently, the corresponding potentials V−(x, a1)

and Ṽ−(x, a1) will also be of finite depth and generate only a finite number of bound states.
This is consistent with the desired structure of energy spectrum for the α �= 0 shape invariant
potentials in two steps, which was mentioned previously.

Because the solution g>
1 (x) (equation (54)) is given only in the (x > xc) range, it cannot

be directly extended to the small x region (x → 0+). For a complete function g1(x) to cover
the entire space, we need a second portion of the solution for g1(x). To accomplish this, let
us denote the second portion of the solution by g<

1 (x). Then, on solving equation (27), we
obtain the g<

1 (x) function in the range (0 < x < xc) as

|α|
k

x = coth−1
[
kg<

1 (x)
]

+
1√

1 − k2R2

coth−1

[
k

√
g<

1 (x)2 − R2

1 − k2R2

]
, (55)

where the choice of g<
1 (x) < 0 and g̃<

1 (x) > 0 is required for this second portion of solution
to retain unbroken SUSY.3 Again, a similar expression can be gotten for the function g̃<

1 (x).
g<

1 (x) and g̃<
1 (x) are plotted in figure 1, respectively represented by the g1(x) and g̃1(x) curves

over the specified range (0 < x < xc).
Here, the choice of g<

1 (x) < 0 and g̃<
1 (x) > 0 is very critical for the construction of

normalizable ground-state wavefunctions ψ
(−)
0 (x, a1) and ψ̃

(−)
0 (x, a1) near the x = 0 point.

To confirm this point, let us find a small x expression for equation (55), which is equivalent to
expand both arccoth functions on the right-hand side of equation (55) at large value of g<

1 (x).
At this stage, we should have a formal series expansion for the position function as x = x

(
1

g<
1

)
.

Then, we can directly invert this function term by term to yield a series expansion for g<
1 (x).

After the smoke clears, we obtain a small x expansion for the g<
1 (x) function of the form

g<
1 (x) = −

(
R2

6|α|x
)1/3

[
1 +

4 + 3k2R2

20k2

(
6|α|x
R2

)2/3

+ O(x4/3)

]
. (57)

Note that for small x the g<
1 (x) function exhibits a −x−1/3 singularity. In the same manner,

a small x expansion for the g̃<
1 (x) function can also be derived. It turns out that its series

expansion is

g̃<
1 (x) =

(
R2

6|α|x
)1/3

[
1 +

4 − 3h2R2

20h2

(
6|α|x
R2

)2/3

+ O(x4/3)

]
, (58)

where h ≡
√

2|α|
R1+R̃1+2αR2

. Let us note that the g̃<
1 (x) function is of the x−1/3 singularity for

small x, while having the same strength of singularity as the g<
1 (x) function.

Hence, to examine the singular behaviors near the origin for the both superpotentials
W(x, a1) and W̃ (x, a1), we can simply substitute both series expansions of equations (57)

3 We could have instead chosen g<
1 (x) > 0 and g̃<

1 (x) > 0 in the second portion in equation (55), since it is also
a legitimate solution to equation (27). However, it would break SUSY spontaneously. Such a choice gives the
superpotentials W(x, a1) and W̃ (x, a1) in equation (19) singularities around x = 0 point of the forms, respectively,(

1

2
− R1 + 2a1R2

αR2

)
1

x
and −

(
1

2
+

R1 + 2a1R2

αR2

)
1

x
. (56)

Any arbitrary combination of R1 + 2a1R2 �= 0 thus results in both ψ
(−)
0 (x, a1) and ψ̃

(−)
0 (x, a1) not normalizable, and

breaks SUSY as told. In order for these two superpotentials to retain unbroken SUSY, we must require R1 +2a1R2 = 0.
However, by using equations (20) and (35) this implies that R(a1) = 0. It leads us to a trivial SUSY shape invariant
potential, where except for the zero-energy ground state no other excited state exists.
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Figure 2. The corresponding regularized superpotentials W reg(x, a1) and W̃ reg(x, a1), given by
equations (19), (32) and (33), for the same set of parameters as in figure 1.

and (58), together with equations (32) and (33), into equation (19). After some algebra,
we find that the singular term of W(x, a1)(W̃ (x, a1)) around x = 0 point behaves like
−(+)

[
1

24R2x
+ O(x−1/3)

]
, respectively. In order for the both ground-state wavefunctions

ψ
(−)
0 (x, a1) and ψ̃

(−)
0 (x, a1) to be normalizable and for SUSY to still be retained, we must

therefore restrict the strength of the singularities to be in the region, 0 < 1
12R2

< 1 [13, 17].

Note that R2 > 0 here. Consequently, as long as R2 > 1
12 in equation (55) is satisfied, we are

definitely guaranteed to obtain the new solution of SUSY preserving shape invariant potentials
in two steps. Amongst, the main ingredient function g1(x) is composed of g>

1 (x) (54) for
xc < x < ∞ and g<

1 (x) (55) for 0 < x < xc. In mathematical expression, it is of the form
(for x > 0)

g1(x) = g<
1 (x)[1 − θ(x − xc)] + g>

1 (x)θ(x − xc), (59)

where θ(x − xc) is the step function, which is 0 for x < xc and is +1 for x > xc. We note that,
in the new class of shape invariant potentials in two steps, the function g1(x) (g̃1(x)) cannot
be expressed in terms of elementary functions, but only given in implicit forms (54) and (55).
The same must be true for the corresponding superpotentials and potentials constructed out of
it.

In figure 2, we show the respective regularized superpotentials W reg(x, a1) and W̃ reg(x, a1)

constructed from g1(x) and g̃1(x) numerically. Without regularization, both of them are found
to exhibit an infinite discontinuity at x = 0, in addition to two finite ones at x = ±xc. Since the
infinite discontinuity of the superpotentials is not acceptable, we thus need to regularize them
by the method depicted in subsection 3.1 [13]. In figures 3 and 4, we plot the corresponding
regularized potentials V

reg
− (x, a1) and Ṽ

reg
− (x, a1) and their energy spectra, respectively. For

each regularized potential, three Dirac delta-function singularities are found: one is from the
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Figure 3. The corresponding regularized potential V
reg
− (x, a1) and its eigenvalue spectrum, having

six bound-state energies En = 0, 6.25, 10, 12.25, 15, 15.25 that are obtained by equations (15),
(16), (42) and (43).
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Figure 4. The corresponding regularized potential Ṽ
reg
− (x, a1) and its eigenvalue spectrum, with

five bound-state energies En = 0, 3.75, 6, 8.75, 9.

regularization of the infinite discontinuity at x = 0. The other two are from the derivatives of
the finite discontinuities, expressed by the θ functions in equation (59), at x = ±xc. Note that
the delta-functions are present to accommodate the zero-energy ground state for the regularized
potentials.

Let us end the section with a discussion on the energy spectrum of the new class of shape
invariant potentials in two steps. For unbroken SUSY and the choices R2 > 0 and R1 +R̃1 > 0,
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the calculations indeed show that the depth of V
reg
− (x, a1) is deeper than that of Ṽ

reg
− (x, a1).

See figures 3 and 4 for details. In this circumstance, the eigenfunctions of the system are
ordered as those depicted in equations (17) and (18) and the energy eigenvalues are as those
represented in equations (15) and (16).4 Hence, according to the transformation rule (37),
we conclude that for the case of R2 < 0 and R1 + R̃1 > 0 the eigenfunctions of the system
must be given in equations (40) and (41) and the energy eigenvalues must be represented in
equations (38) and (39), instead. The very same results we have argued previously in the two
paragraphs after equation (37).

Because the two-step shape invariant potentials are of finite depth (R2 > 0) in the new
class, the highest-energy bound state could be an even number state ψ

(−)
2N (x, a1) or an odd

number state ψ
(−)
2N+1(x, a1), for N a positive integer. We have to determine under what condition

the highest-energy eigenstate is even or odd. To proceed, we recall some important properties
on the remainders implied from the paragraph in equations (44) and (45). The remainder
R(1)(an+1) is a concave-up function with R(1)(an+1) > 0 for n �= n

(1)
0 and R(1)(an+1) = 0 for

n = n
(1)
0 . The remainder R̃(1)(an+1) > 0 is a concave-down function with R̃(1)(añ+1) > 0

only in the interval ñ
(1)
− � ñ � ñ

(1)
+ , where ñ

(1)
− < 0 and ñ

(1)
+ > 0 must be satisfied to prevent

negative values of the remainders at small quantum number (n = 0, 1, . . .). As we already
know, the quantum number definitely is a non-negative integer, but the roots n

(1)
0 , ñ

(1)
+ and ñ

(1)
−

obtained from equations (44) and (45) may be integers or real numbers. So let us introduce
a notation [m] for them (m = n

(1)
0 , ñ

(1)
+ , and ñ

(1)
− ) to denote the operation of taking the nearest

integer that is equal to or larger than m. For instance, if m = 5 we have [5] = 5 and if
m = 4.32 we have [4.32] = 5.

Now, we present the condition for the R2 > 0 case on the even and odd highest-energy
eigenstate as follows. A similar result can be reached for the R2 < 0 case by the transformation
rule (37). On the one hand, the system is found to exhibit an odd-number highest-energy
eigenstate, say ψ

(−)
2N+1(x, a1). Then from the structure of energy spectrum (15) and (16),

we impose the constraints on the remainders: R(1)(an+1) �= 0 (for n = 0, 1, . . . , N) and
R̃(1)(aN) > 0 and R̃(1)(aN+1) � 0. It consequently implies that n

(1)
0 �= 0, 1, . . . , N and the

quantum number is defined by N = [ñ(1)
+ ]. On the other hand, if the system exhibits an even-

number highest-energy eigenstate, say ψ
(−)
2N (x, a1), then from equations (15) and (16), we get

the constraints on the remainders as R(1)(aN+1) = 0 and R̃(1)(aN) > 0. This then implies
that

[
n

(1)
0

] = n
(1)
0 is an integer, the quantum number is given by N = n

(1)
0 , and [ñ(1)

+ ] � N .
It is instructive to calculate these root values. Let us take the set of parameters in figure 1 as
an example, where a1 = 1, α = −1, R2 = 1, R1 = 3 and R̃1 = 2. By plugging them into
equations (44) and (45), we get n

(1)
0 = 2.5 and ñ

(1)
± = ±1.936. Because n

(1)
0 is not an integer,

the quantum number becomes N ≡ [ñ(1)
+ ] = 2. We therefore conclude that the highest-energy

eigenstate of the system will be the odd number state ψ
(−)
2N+1(x, a1) = ψ

(−)

5 (x, a1). The result
is in agreement with that in figure 3.

4. Conclusions

Using an ansatz for shape invariance condition in two steps, we have obtained by solving
equations (21)–(25) a class of the SUSY preserving potentials, where the parameters a1 and
a2 are related to each other by translation (a2 = a1 + α). Due to the choice of the ansatz, the
shape invariant potential presented in subsection 3.1 for the α < 0 case looks cumbersome
and complicated. However, there is a special limit for the ansatz that could render more

4 Alternatively, if R1 + R̃1 < 0 is chosen, then it is the ground-state wavefunctions ψ
(+)
0 (x, a1) and ψ̃

(+)
0 (x, a1) that

are normalizable.
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nice-looking potentials. It is achieved by setting R2 = 0 in equations (21)–(25). In this limit,
we have either g̃1(x) = ±g1(x) from equation (21). The choice of g̃1(x) = −g1(x) gives us
trivial solution, since all the functions gi(x) and g̃i(x) (i = 0, 1) are nothing but constants.
We are thus lead to choose the relation g̃1(x) = g1(x). By using this fact and simultaneously
solving equations (22)–(25), we find that the functions g0(x) and g̃0(x) are expressible in
terms of g1(x) by

g0(x)

g̃0(x)

}
=

(
R0

R1
∓ α

4

)
g1(x) ± R1 − R̃1

8g1(x)
. (60)

In addition, the relation among the R coefficients is written as αR1R̃1 = 2(R1R̃0 − R0R̃1).
Meanwhile, the g1(x) function can be solved directly from equation (27) by setting R2 = 0
and taking the + sign on the left-hand side. Then, based on the obtained result for the
g1(x) function, we are able to construct the superpotentials W(x, a1) and W̃ (x, a1) from
equation (19) and derive the corresponding two-step shape invariant potentials.

It turns out that there are three solutions of interest that retain SUSY [13]. As an
illustration, we present these solutions for R1 + R̃1 > 0, because it guarantees that the
wavefunctions ψ

(−)
0 (x, a1) and ψ̃

(−)
0 (x, a1) can be made normalized. The first solution is

when α = 0, where we surprisingly discover the so-called singular harmonic oscillator
superpotentials. The second solution is when α > 0, where the singular Pöschl–Teller I
superpotentials is reproduced. The last solution is when α < 0, where this case yields us the
singular Pöschl–Teller II superpotentials. In all three special solutions, the superpotentials are
singular like ± 1

2x
R1−R̃1

R1+R̃1
and have an infinite discontinuity at the origin. To retain unbroken

SUSY and shape invariance, we have to restrict the strength of singularity and to regularize
the infinite discontinuity. As a result, the regularized potentials acquire an extra Dirac delta-
function singularity at the origin.

In the new translation class of the shape invariant potentials in two steps, the
superpotentials W(x, a1) and W̃ (x, a1) are found not to be expressible in terms of elementary
functions, but only in implicit forms via the main ingredient function g1(x) (59). Meanwhile,
the function g1(x) consists of two portions of transcendental functions g>

1 (x) (54) and g<
1 (x)

(55). Despite this, both the superpotentials can be shown to exhibit an x−1 singularity with
infinite discontinuity at the origin, in addition to two antisymmetric finite discontinuities at
the x = ±xc points. After proper regularization, the regularized potentials V

reg
− (x, a1) and

Ṽ
reg
− (x, a1) thus acquire three Dirac delta-function singularities separately located at the x = 0

and x = ±xc points. As a matter of fact, the construction of such superpotentials is nontrivial,
since it involves patching different portions of the g1(x) and g̃1(x) functions to complete
the work. In order for both superpotentials to retain SUSY and shape invariance, we must
carefully adjust the relative sign between the g1(x) and g̃1(x) functions at small x, so that the
singularities at the origin are still within the so-called ‘soft’ region and the potentials become
‘transitional’. Furthermore, from the structure of energy spectrum, we conclude that the new
shape invariant potentials in two steps allow only a finite number of bound states, so that
they must be of finite depth. Therefore, any potential of infinite depth certainly cannot be a
candidate of the shape invariant potential in two steps in this new translation class.
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